
Lightening
Your Responsive
Website Design
with RESS

A Framework for Responsive
DESIGN with Server Side
components (RESS)

CONTENTS

03	 ress

04	 introduction

05	 Why you should do this

05	H ow to implement it

06	 instructions

07	 step-by-step instructions

08	 What’s happening under the covers

09	 Results

10	 rwd results

11	 the data

12	 summary

13	 FURTHER optimizations

15	 optimization 2: css & javascript

15	 result

16	 optimization 3: connectivity analysis

18	 result: further payload savings

20	C onclusion

ress
04	 introduction

05	w hy you should do this

05	 how to implement it

introduction
Responsive Web Design (RWD) has made a huge impact as an
approach to designing for mobile. It has also caused a lot of
debate: on the plus side, it allows for one codebase to cater to
devices with a range of different screen sizes. On the debit side,
serving the same payload to all devices irrespective of device
capabilities, screen size and resolution, and indeed connection
speed, can effectively close off entire markets to companies who
don’t optimize.

It’s hard to over-emphasize the importance of basic UX issues
such as page load times but if you need a good case study read
what happened to YouTube when they lightened their pages
(summary: entire new territories opened up to them).

With billions of currently active mobile subscriptions in the
world, access to the web via mobile devices continues to grow
apace. Larger brands know that adapting their content to the
increasingly varied devices and contexts that people use to get
online has a positive effect on engagement and sales.

Customers have high expectations when it comes to user
experience and much research has shown that abandonment
rates increase in direct proportion to load times. Responsive
has offered a way for companies to provide a unified website
experience across different device types, but it often comes at
the expense of heavy sites that aren’t optimized well for mobile
devices and compromised connectivity.

RESS (Responsive Web Design with Server Side components)
offers a way to get the best of both worlds: a responsive website
design that fully optimized for different device types. By using
DeviceAtlas as the server side component, you can make
significant performance improvements over ‘classic’ RWD and
enjoy the concurrent uplift in reach, without the need for any
ongoing maintenance. Your responsive site will work on almost
any device, rather than the desktop, tablet and smartphone
buckets of typical RWD implementations, and load faster in
all cases. All it takes is a few lines of code, and some simple
configuration.

http://blog.chriszacharias.com/page-weight-matters
http://blog.chriszacharias.com/page-weight-matters
http://http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
http://http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/

Why you should do this

With classic RWD, all devices are sent the same images even if they can’t show
them at their native resolution. This is inefficient at best and market-limiting
at worse. Heavier pages only work well on high speed connections, on high end
devices with generous data plans.

This technique will significantly reduce image weight with 3 easy steps, 4
lines of code and 1 line of configuration. And once implemented, it requires
no maintenance. Your website will have adaptive page weights as well as a
responsive design.

Our example site with fully responsive site design, with responsive page
weights:

How to implement it

There are three levels of optimization demonstrated here, each of which
builds on the previous level. They can be implemented together or separately.

1.	 Image payload reduction via server side detection

2.	 JavaScript & CSS payload reduction

3.	 Further optimizations based with bandwidth detection

This framework assumes you are using Apache web server but the technique
described will work equally well with NGINX, or any programming language.
We created a demo site with an industry-average breakdown of HTML, images
and JS to illustrate the impact of this approach.

Desktop
1360 x 768 1,027 KB

iPhone
320 x 480 153 KB

Nokia 6300
240 x 320 25 KB

http://httparchive.org/trends.php
http://httparchive.org/trends.php

instructions
07	 step-by-step instructions

08	w hat’s happening under the covers

step 1

•	 Install Google’s PageSpeed, an open source web and assets
optimization project from Google.The installation process usually
activates the module for the default website but you might need to
ensure that it works with your virtual hosts, if configured.

You can read how to do this here. Basically you just have to add a line
to each one, or get them all to inherit from the default configuration
server-wide.

•	 Restart your web server.

step 2

•	 Get a DeviceAtlas Cloud license (a trial licence is available here.
it’s free and will work fine as a proof of concept).

•	 Unpack the ZIP file.

•	 Enter your license key in the DeviceAtlasCloud/Client.php file. DeviceAtlas
will be used to decide the optimal size target for resizing images.

step 3

•	 Copy the DeviceAtlas PHP file to a directory where it is executable by the
web server. In this case, we’ve created a directory in the root of the site
called DeviceAtlasCloud.

•	 Enter the following code at the top of your HTML file or site template
to set up a couple of variables that we can use throughout the page.

<?php
 include ‘DeviceAtlasCloud/Client.php’; // instantiate client
 $results = DeviceAtlasCloudClient::getDeviceData(); // fetch properties for current device
 $props = $results[‘properties’]; // store in $props
 $width = (isset($props[‘displayWidth’])) ? $props[‘displayWidth’] : “”; // set $width to correct width or “” if
unknown
?>

step 4

•	 The final step is to make sure that all of your images that may need
resizing have a width attribute set to use the $width variable, enter
the following code

<img src=”img/slide-01.jpg” width=”<?php echo $width; ?>” alt=”image description” />

step-by-step Instructions

https://developers.google.com/speed/pagespeed/module/download
https://developers.google.com/speed/pagespeed/module/configuration
http://deviceatlas.com/
https://deviceatlas.com/pricing-and-trial

•	 Images have their width attribute automatically set to the maximum
display width for each device by the $width variable.

•	 PageSpeed notices the width=”…” tag for each image and resizes
it down if necessary, replacing the image source attribute with a
reference to a resized version. There is no need to set the height
attribute because PageSpeed will automatically keep the aspect ratio
intact. Resized images are cached so there isn’t really any significant
impact on the server. Refer to the PageSpeed configuration notes
below for more fine-grained control over
this cache.

Notes: Only add this variable width tag to images that require resizing for each
device – not to images that are already small enough like bullet icons and so forth.

Be aware that setting the width attribute for each image will need to coexist with
any css that you define for image display. If you use a cms, you may have to use
a different technique for this depending on what access the cms gives you to the
underlying html.

Background images may require a different approach, depending on how they are
utilized on the site but PageSpeed will read inline style=”…” tags.

What’s happening under
the covers

results
10	 rESS results

10	 the data

12	 summary

rESS results

First let’s take a look at the efficiencies generated in actual payloads for
different devices. We will look at what this means in terms of speed and
increased user experience a little later.

Before employing RESS the overall over-the-network page size (with
GZIP compression from Apache) was 1,027 KB, regardless of device.

Measuring for two mobile devices at each end of the high/low spectrum,
an iPhone and a Nokia 6230 with RESS, the overall page size has
dropped by 75% for the iPhone and 84% for the Nokia 6230. The
reduction in image sizes accounting for the majority of this. Importantly,
there is no user-perceptible difference between the site before and
after: the image data that was removed could not easily have been seen
by person holding the phone.

the data

This has a huge impact on real world customerS:

•	 Much faster page load times > better engagement,
conversions, lower abandonment rates, higher
customer satisfaction

•	 Wider device and network compatibility > improved reach

•	 Lower data plan impact > more return visits

Device All devices iPhone Nokia 6230
Network size
per component

BEFORE AFTER
(75% lighter)

AFTER
(84% lighter)

HTML 3 KB 3 KB 3 KB

Images 941 KB 177 KB 89 KB

JavaScript 55 KB 51 KB 51 KB

CSS 27 KB 21 KB 21 KB

Total 1,027 KB 253 KB 164 KB

Result 1:
page weights slashed

To measure the impact we tested download speed of our demo site for
different devices and network speeds, using the Charles Proxy and real
devices on various bandwidths.

http://www.charlesproxy.com/

M
IN

U
TE

S

0

200

400

600

800

1000

1200

RESS NOKIA 6230 RESS IPHONE CLASSIC RWD
ALL DEVICES

ASSET BREAKDOWNS

TOTAL CSS JS HTMLIMAGES

M
IN

U
TE

S

CODE PAYLOADS: WITH/WITHOUT RESS

0

200

400

600

800

1000

1200

RESS
NOKIA 6230

RESS IPHONE CLASSIC RWD
ALL DEVICES

PAYLOADS kb

84% REDUCTION
75.3% REDUCTION

The original ‘classic’ RWD design may have looked alright on small
screens, but the original images were about 5 times wider (in pixel
terms) than the average phone display, so load times were never
optimal. The sheer size of the page meant that it didn’t even finish
loading on some devices we tested.

The payload efficiencies outlined above lead naturally to
increased user experience in the form of faster page loads.

Employing the RESS technique addresses this weakness of
‘classic’ RWD. By measuring the before and after page load speeds
for a retina iPhone over a 3G versus a GPRS network, page load
times are significantly improved:

Results on Android devices are similar. On lower-end devices
more dramatic improvements are experienced because the
image resizing gains are larger.

Device Connectivity Load time
Before

Load time
After

Speed
Improvement

iPhone 3G 14s 6s 2.3x Faster

iPhone GPRS 2m 30s 35s 4.3x faster

summary

Result 2:
faster page loads

Further optimizations
14	 optimization 2: css & javascript

15	 result

16	 optimization 3: connectivity analysis

18	 result: further payload savings

Optimization 2: CSS & JavaScript

So far, we’ve looked only at the main source of bloat on pages: images.
But screen size shouldn’t be the sole factor for optimizing – user contexts
and constraints demand more of a multi-device publishing strategy. If you
know that the requesting device doesn’t support JavaScript or rich CSS you
can lighten further by excluding them.

step 1

•	 Add the following PHP code to the top
of your HTML file:

$highEndDevice = (isset($properties[‘browserRenderingEngine’]) &&
in_array($properties[‘browserRenderingEngine’], array(‘Gecko’, ‘Trident’,
‘WebKit’, ‘Presto’)));

This code identifies a low-end device based on its rendering engine. If the
device appears to be a low-end device we’ll jettison the CSS and JavaScript
because low-end phones have issues with both the file size and the
rendering of CSS, and usually won’t run the JavaScript.

step 2

•	 Add this piece of code in the <head> section of your webpage to remove
css where necessary.

<?php if ($highEndDevice): ?>
 <link href=”css/bootstrap.css” rel=”stylesheet”>
 <link href=”css/bootstrap-responsive.css” rel=”stylesheet”>
 <link href=”css/additional.css” rel=”stylesheet”>
<?php endif; ?>

step 3

•	 Add the following code at the end of your html file to remove the
JavaScript

<?php if ($highEndDevice): ?>
 <!-- Le javascript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src=”js/jquery.js”></script>
 .
 .
<?php endif; ?>

result

This removes a further 72KB from the payload and actually makes the
page look better on low-end devices in addition to being quicker to render.

Our simple RWD page has now gone from a fixed size of about 1 MB to
a highly varying one that goes as low as about 92KB, or 11x smaller than
the initial page. Not a bad result for less than 10 lines of code. The net
result is that our page is now viewable on almost anything, anywhere
quickly, from television to feature phone. You may not be targeting TVs
and feature phones, but now they will come to you.

Note: In testing this approach on real devices the HTML5 doctype tag did not
cause problems − the page loaded on pretty much every device we tried.

M
IN

U
TE

S

CODE PAYLOADS:
CLASSIC RWD V RESS (IMAGES, JS, CSS)

0

200

400

600

800

1000

1200

RESS
IMAGES, JS & CSS
- ANY FEATURE

PHONE

RESS
IMAGES - NOKIA 6230

CLASSIC RWD
ALL DEVICES

PAYLOADS kb

Optimization 3:
Connectivity Analysis

Anybody who has connected to the internet over airport Wi-Fi, conference
Wi-Fi, or from a poorly connected location knows just how frustrating it is to
use the web when pages are large, no matter what the device; laptop, tablet
or phone.

By measuring the available connectivity, you can dynamically apply similar
image compression techniques according to bandwidth available to the user.
If the connection is poor, images can be aggressively compressed without
reducing their pixel size. This can make a huge difference to the browsing
experience. The resulting page loads much faster with only a slight impact on
the experience—page layout and overall appearance are preserved. Depending
on the compression levels chosen many people won’t even notice.
DeviceAtlas has a very useful feature called Connectivity Analysis to do exactly
this, allowing the developer to make some useful choices about what to send
the client when bandwidth is limited. 1

This example is quite simple, yet very effective. If the detected bandwidth
available to the device falls below a certain threshold we will redirect the
browser to a different virtual host. This virtual host is served by the same web
server and serves the exact same page, but triggers a different set of options

1	 Making bandwidth information available to the browser is something that the W3C are working on but the

Network Information API is still in draft status so it’s not going to be widely deployed in the near future.

M
IN

U
TE

S
ASSET BREAKDOWNS

0

200

400

600

800

1000

1200

RESS IMAGES, JS & CSS,
CONNECTIVITY

FEATURE PHONES

CLASSIC RWD PAYLOAD
ALL DEVICES

TOTAL CSS JS HTMLIMAGES

https://deviceatlas.com/resources/dynamic-data#connectionSpeed
http://www.w3.org
https://dvcs.w3.org/hg/dap/raw-file/tip/network-api/Overview.html

for PageSpeed. By changing the image compression level from its default to
something much lower, say 20%, images are still very much recognizable, but
many times smaller.

This is an example of what is possible rather than a definitive technique:

step 1

•	 Add a new vhost to your server config and configure PageSpeed
to use different settings for this

step 2

•	 Restart your web server.

Note: we are using site.com and lo.site.com as our vhosts. The documentroot
is the same in each case – the same html is being served for both vhosts.

<VirtualHost *:80>
ServerAdmin webmaster@localhost
ServerName site.com
DocumentRoot /var/www/site.com
ModPagespeed on
</ VirtualHost>

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
ServerName lo.site.com
DocumentRoot /var/www/site.com
ModPagespeed on
ModPagespeedImageRecompressionQuality 20
</ VirtualHost>

step 3

•	 Add the connectivity checking code to your site template. This switches
virtual host if connectivity looks to be poor:

require_once:’DeviceAtlasNPC.php’; //check network performance
session_start();
$deviceAtlasNPC = new DeviceAtlasNPC(); // instantiate NPC
$quality = $deviceAtlasNPCK>getQuality(); // test network performance
$path = $_SERVER[‘SCRIPT_NAME’];
switch($quality) {
case:DeviceAtlasNPC::HIGH_QUALITY:
if:($_SERVER[‘HTTP_HOST’]:==:’lo.site.com’):{
header(“Location::http://site.com”.$path:);
}
break;
case:DeviceAtlasNPC::MEDIUM_QUALITY:
if ($_SERVER[‘HTTP_HOST’] == ’lo.site.com’) {
header(“Location: http://site.com”.$path);
}
break;
case:DeviceAtlasNPC::LOW_QUALITY:
if ($_SERVER[‘HTTP_HOST’] == ’site.com’) {
header(“Location::http://lo.site.com”.$path);
}
break;
default:
}

The initial redirect to the lower bandwidth version of the site does have some
impact on the load time, but this is far outweighed by the net savings in doing
so, particularly for those with constrained bandwidth.

High bandwidth customers should be almost unaffected. The cost of this
redirect step on a slow GPRS connection is approximately 1 second, but the
resulting savings can add up to minutes.

Result 1:
Further payload savings

Result 2:
Further payload savings

Device Original site Add image
resizing

Adaptive
JS & CSS

Adapt to
connectivity

Page Size Load
Time

Page
Size

Load
Time

Page
Size

Load
Time

Page
Size

Load
Time

iPhone 3G 1027 KB 14s 253 KB 6s 253 KB 6s 153 KB 5s

iPhone GPRS 1027 KB 2m 30s 253 KB 40s 253 KB 40s 153 KB 25s

Feature
Phone (2G)

1027 KB ∞ 164 KB 35s 92 KB 25s 25 KB 12s

M
IN

U
TE

S

CODE PAYLOADS:
CLASSIC RWD V RESS (IMAGES, JS, CSS, CONNECTIVITY)

0

200

400

600

800

1000

1200

RESS
IMAGES, JS & CSS,

CONNECTIVITY
- ANY FEATURE

PHONE

RESS
IMAGES, JS & CSS,

CONNECTIVITY
- IPHONE

CLASSIC RWD
ALL DEVICES

PAYLOADS kb

conclusion

Conclusion

With all of these optimizations in place, we now have page weights that
scale dynamically from about 1 MB all the way down to 25 KB. The page
incorporates the best of RWD and server-side optimizations to yield a
dynamic range (a ratio of the largest page weight to lowest page weight
served) factor of over 40.

 As a result, the “reach” of this page has been extended from desktop and
smart devices in well-connected locations to almost anything, anywhere,
regardless of connection type.

Device Original site Add image
resizing

Adaptive
JS & CSS

Adapt to
connectivity

Page Size Load
Time

Page Size Load
Time

Page Size Load
Time

Page Size Load
Time

iPhone 3G 1027 KB 14s 253 KB 6s 253 KB 6s 153 KB 25s

iPhone GPRS 1027 KB 2m 30s 253 KB 40s 253 KB 40s 153 KB 25s

Feature Phone
(2G)

1027 KB ∞ 164 KB 35s 92 KB 25s 25 KB 12s

These loading times are all worst-case scenarios tested with an
empty cache. Subsequent page loads as you traverse the site will
feel much faster.

Coming back to the page linked at the top of this paper, Chris Zacharias,
speaking of his experience optimizing YouTube’s page weight, said:

“[Previously] entire populations of people simply could not use YouTube
because it took too long to see anything. By keeping your code small and
lightweight, you can literally open your product up to new markets.”

By using some of the techniques outlined in this article you may be able
to achieve similar results for your website.

M
IN

U
TE

S

LOAD TIMES ON DIFFERENT DEVICES & NETWORKS

0

1

2

3

4

5

6

DESKTOP (high speed) iPhone 3G iPhone GPRS FEATURE PHONE 2GDESKTOP (56K Modem)

RESS WITH
IMAGES, JS & CSS

CONNECTIVITY

RESS WITH
IMAGES, JS & CSS

RESS WITH
IMAGE RESIZING

CLASSIC RWD

http://blog.chriszacharias.com/page-weight-matters

About dotMobi

dotMobi focuses on giving content publishers the tools they need to ensure the Web will work
on mobile phones and connected devices with speed, accuracy and relevant content. We are
immersed in all things mobile web. Mobile is in our DNA.

A wholly owned subsidiary of Afilias, dotMobi was founded in 2005 by leading mobile operators,
network device manufacturers, and Internet content providers, including Ericsson, Google, GSM
Association, Hutchison 3, Microsoft, Nokia, Orascom Telecom, Samsung Electronics, Syniverse,
T-Mobile, Telefónica Móviles, Telecom Italia Mobile (TIM), Visa and Vodafone

DeviceAtlas is one of the largest open repositories of
mobile device profiles, based on W3C recommendations. It
provides the supporting tools, techniques and assistance
that you need to take that data and use it to rock your
mobile users’ world. www.deviceatlas.com

goMobi™ is the world’s first content mobilization platform,
a hybrid of a traditional content management system
and a practically automatic mobile website builder. It’s
the smart, simple way for businesses and designers &
developers to build a mobile Web presence. www.gomobi.
info
mobiThinking™ is here to help you market your mobile
site. It’s packed with insight, analysis and opinions from
the world’s mobile marketing gurus. www.mobithinking.
com
mobiForge™ is the dotMobi developer forum -- a center
for mobile Web developer tools, resources and support.
More than 50,000 developers and designers meet here
to compare notes, share tips, upload ideas and download
expertise. www.mobiforge.com

mobiReady™ evaluates mobile-readiness using industry
best practices and standards. Test your mobile website
and get a free report plus in-depth analysis to determine
how well your site performs on a mobile device. ready.
mobi

Contact information
dotMobi
2 La Touche House
IFSC
Dublin 1
Ireland

Email: sales@deviceatlas.com
Phone: +353.1.854.1100
Fax: +353.1.791.8569

© 2013 Afilias Technologies Ltd (dotMobi). All rights reserved.

